42 research outputs found

    Driven weak to strong pinning crossover in partially nanopatterned 2H-NbSe2 single crystal

    Full text link
    Investigations into the heterogeneous pinning properties of the vortex state created by partially nano-patterning single crystals of 2H-NbSe2 reveal an atypical magnetization response which is significantly drive dependent. Analysis of the magnetization response shows non-monotonic behavior of the magnetization relaxation rate with varying magnetic field sweep rate. With all the patterned pinning centers saturated with vortices, we find that the pinning force experienced by the vortices continues to increase with increasing drive. Our studies reveal an unconventional dynamic weak to strong pinning crossover where the flow of the vortex state appears to be hindered or jammed as it is driven harder through the interstitial voids in the patterned pinning lattice.Comment: 15 pages with 5 figure

    Anomalous local magnetic field distribution and strong pinning in CaFe1.94Co0.06As2 single crystals

    Full text link
    Magneto-optical imaging of a single crystal of CaFe1.94Co0.06As2, shows anomalous remnant magnetization within Meissner like regions of the superconductor. The unconventional shape of the local magnetization hysteresis loop suggests admixture of superconducting and magnetic fractions governing the response. Near the superconducting transition temperature, local magnetic field exceeds the applied field resulting in a diamagnetic to positive magnetization transformation. The observed anomalies in the local magnetic field distribution are accompanied with enhanced bulk pinning in the CaFe1.94Co0.06As2 single crystals. We propose our results suggest a coexistence of superconductivity and magnetic correlations.Comment: 6 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1201.369

    MicroSQUID Force microscopy in a dilution refrigerator

    Full text link
    We present a new generation of a scanning MicroSQUID microscope operating in an inverted dilution refrigerator. The MicroSQUIDs have a size of 1.21$ \ \mum\textsuperscript{2} and a magnetic flux sensitivity of 120 \mu\Phi_{0} / \sqrt{\textrm{Hz}}andthusafieldsensitivityof and thus a field sensitivity of %550^{-6} \ \Phi_{0} / \sqrt{\textrm{Hz}}550 550 \ \mu \textrm{G}/ \sqrt{\textrm{Hz}}.Thescanrangeatlowtemperaturesisabout80. The scan range at low temperatures is about 80 \mu$m and a coarse displacement of 5 mm in x and y direction has been implemented. The MicroSQUID-to-sample distance is regulated using a tuning fork based force detection. A MicroSQUID-to-sample distance of 420 nm has been obtained. The reliable knowledge of this distance is necessary to obtain a trustworthy estimate of the absolute value of the superconducting penetration depth. An outlook will be given on the ongoing direction of development

    Metastable inhomogeneous vortex configuration with non-uniform filling fraction inside a blind hole array patterned in a BSCCO single crystal and concentrating magnetic flux inside it

    Full text link
    Using magneto-optical imaging technique, we map local magnetic field distribution inside a hexagonally ordered array of blind holes patterned in BSCCO single crystals. The nature of the spatial distribution of local magnetic field and shielding currents across the array reveals the presence of a non-uniform vortex configuration partially matched with the blind holes at sub-matching fields. We observe that the filling fraction is different in two different regions of the array. The mean vortex configuration within the array is described as a patchy vortex configuration with the patches having different mean filling fraction. The patchy nature of the vortex configuration is more pronounced at partial filling of the array at low fields while the configuration becomes more uniform with a unique filling fraction at higher fields. The metastable nature of this patchy vortex configuration is revealed by the application of magnetic field pulses of fixed height or individual pulses of varying height to the array. The metastability of the vortex configuration allows for a relatively easy way of producing flux reorganization and flux focusing effects within the blind hole array. Effect of the magnetic field pulses modifies the vortex configuration within the array and produces a uniform enhancement in the shielding current around the patterned array edges. The enhanced shielding current concentrates magnetic flux within the array by driving vortices away from the edges and towards the center of the array. The enhanced shielding current also prevents the uninhibited entry of vortices into the array. We propose that the metastable patchy vortex configuration within the blind hole array is due to a non-uniform pinning landscape leading to non-uniform filling of individual blind holes.Comment: 15 pages, 6 figure

    Generating strong magnetic flux shielding regions in a single crystal of Bi2Sr2CaCu2O8 using a blind hole array

    Full text link
    Magneto-optical imaging studies in a single crystal of Bi2Sr2CaCu2O8 partially patterned with a hexagonal array of pinning centers (blind holes) reveals local features in the patterned region which are distinct compared to the pristine unpatterned regions in the sample. The patterned area exhibits a strongly diamagnetic local magnetization response and is characterized by a local penetration field enhanced by a factor of three. We show that strong shielding currents around the periphery of the nanopatterned region create a barrier which prevents vortex entry into the patterned region thus sustaining an effectively flux-free state upto the enhanced penetration field.Comment: 11 pages, 4 figure

    Critical behavior at de-pinning of a driven disordered vortex matter in 2H-NbS2

    Full text link
    We report unusual jamming in driven ordered vortex flow in 2H-NbS2. Reinitiating movement in these jammed vortices with a higher driving force, and halting it thereafter once again with a reduction in drive, unfolds a critical behavior centered around the de-pinning threshold via divergences in the lifetimes of transient states, validating the predictions of a recent simulation study, which also pointed out a correspondence between plastic de-pinning in vortex matter and the notion of random organization proposed in the context of sheared colloids undergoing diffusive motion.Comment: Phys. Rev. B (in press, 2012). The paper has 14 pages of Text+ Refs. with 4 figures. (Note as some of the figure files are large in size, to enable faster download, the file size has been kept small and the figure resolution are low. The online version of the paper to appear in PRB will contain the higher resolution figures

    A Scanning Hall Probe Microscope for high resolution, large area, variable height Magnetic Field Imaging

    No full text
    International audienceWe present a Scanning Hall Probe Microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in x and y directions, with a scan resolution of 0.1 µm. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 µm have been developed. A minimum probe-sample distance < 2 µm has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-system

    Visualizing a dilute vortex liquid to solid phase transition in a Bi2Sr2CaCu2O8 single crystal

    Full text link
    Using high sensitivity magneto-optical imaging we find evidence for a jump in local vortex density associated with a vortex liquid to solid phase transition just above the lower critical field in a single crystal of Bi2Sr2CaCu2O8. We find the regions of the sample where the jump in vortex density occurs are associated with low screening currents. In the field - temperature vortex phase diagram we identify phase boundaries demarcating a dilute vortex liquid phase and the vortex solid phase. The phase diagram also identifies a coexistence regime of the dilute vortex liquid and solid phases and shows the effect of pinning on the vortex liquid to solid phase transition line. We find the phase boundary lines can be fitted to the theoretically predicted expression for the low-field portion of the phase boundary delineating a dilute vortex solid from a vortex liquid phase. We show that the same theoretical fit can be used to describe the pinning dependence of the low-field phase boundary lines provided a dependence of the Lindemann number on pinning strength is considered.Comment: 16 pages and 6 figures (Published

    From Romantic Gothic to Victorian Medievalism: 1817 and 1877

    Get PDF
    &quot;The Cambridge History of the Gothic was conceived in 2015, when Linda Bree, then Editorial Director at Cambridge University Press, first suggested the idea to us

    The Gothic in Victorian Poetry

    Get PDF
    corecore